13 research outputs found

    Instabilities of dispersion-managed solitons in the normal dispersion regime

    Full text link
    Dispersion-managed solitons are reviewed within a Gaussian variational approximation and an integral evolution model. In the normal regime of the dispersion map (when the averaged path dispersion is negative), there are two solitons of different pulse duration and energy at a fixed propagation constant. We show that the short soliton with a larger energy is linearly (exponentially) unstable. The other (long) soliton with a smaller energy is linearly stable but hits a resonance with excitations of the dispersion map. The results are compared with the results from the recent publicationsComment: 20 figures, 20 pages. submitted to Phys. Rev.

    A mode elimination technique to improve convergence of iteration methods for finding solitary waves

    Full text link
    We extend the key idea behind the generalized Petviashvili method of Ref. \cite{gP} by proposing a novel technique based on a similar idea. This technique systematically eliminates from the iteratively obtained solution a mode that is "responsible" either for the divergence or the slow convergence of the iterations. We demonstrate, theoretically and with examples, that this mode elimination technique can be used both to obtain some nonfundamental solitary waves and to considerably accelerate convergence of various iteration methods. As a collateral result, we compare the linearized iteration operators for the generalized Petviashvili method and the well-known imaginary-time evolution method and explain how their different structures account for the differences in the convergence rates of these two methods.Comment: to appear in J. Comp. Phys.; 24 page

    Conjugate gradient method for finding fundamental solitary waves

    Full text link
    The Conjugate Gradient method (CGM) is known to be the fastest generic iterative method for solving linear systems with symmetric sign definite matrices. In this paper, we modify this method so that it could find fundamental solitary waves of nonlinear Hamiltonian equations. The main obstacle that such a modified CGM overcomes is that the operator of the equation linearized about a solitary wave is not sign definite. Instead, it has a finite number of eigenvalues on the opposite side of zero than the rest of its spectrum. We present versions of the modified CGM that can find solitary waves with prescribed values of either the propagation constant or power. We also extend these methods to handle multi-component nonlinear wave equations. Convergence conditions of the proposed methods are given, and their practical implications are discussed. We demonstrate that our modified CGMs converge much faster than, say, Petviashvili's or similar methods, especially when the latter converge slowly.Comment: 44 pages, submitted to Physica

    A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity

    Full text link
    The Petviashvili's iteration method has been known as a rapidly converging numerical algorithm for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with power-law nonlinearity: \ Mu+up=0-Mu+u^p=0, where MM is a positive definite self-adjoint operator and p=constp={\rm const}. In this paper, we propose a systematic generalization of this method to both scalar and vector Hamiltonian equations with arbitrary form of nonlinearity and potential functions. For scalar equations, our generalized method requires only slightly more computational effort than the original Petviashvili method.Comment: to appear in J. Comp. Phys.; 35 page

    On the statistical interpretation of optical rogue waves

    Full text link
    Numerical simulations are used to discuss various aspects of "optical rogue wave" statistics observed in noise-driven fiber supercontinuum generation associated with highly incoherent spectra. In particular, we consider how long wavelength spectral filtering influences the characteristics of the statistical distribution of peak power, and we contrast the statistics of the spectrally filtered SC with the statistics of both the peak power of the most red-shifted soliton in the SC and the maximum peak power across the full temporal field with no spectral selection. For the latter case, we show that the unfiltered statistical distribution can still exhibit a long-tail, but the extreme-events in this case correspond to collisions between solitons of different frequencies. These results confirm the importance of collision dynamics in supercontinuum generation. We also show that the collision-induced events satisfy an extended hydrodynamic definition of "rogue wave" characteristics.Comment: Paper accepted for publication in the European Physical Journal ST, Special Topics. Discussion and Debate: Rogue Waves - towards a unifying concept? To appear 201

    Experimental feasibility of measuring the gravitational redshift of light using dispersion in optical fibers

    Full text link
    This paper describes a new class of experiments that use dispersion in optical fibers to convert the gravitational frequency shift of light into a measurable phase shift or time delay. Two conceptual models are explored. In the first model, long counter-propagating pulses are used in a vertical fiber optic Sagnac interferometer. The second model uses optical solitons in vertically separated fiber optic storage rings. We discuss the feasibility of using such an instrument to make a high precision measurement of the gravitational frequency shift of light.Comment: 11 pages, 12 figure

    A system of ODEs for a Perturbation of a Minimal Mass Soliton

    Full text link
    We study soliton solutions to a nonlinear Schrodinger equation with a saturated nonlinearity. Such nonlinearities are known to possess minimal mass soliton solutions. We consider a small perturbation of a minimal mass soliton, and identify a system of ODEs similar to those from Comech and Pelinovsky (2003), which model the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, which is in accord with the conclusions of Pelinovsky, Afanasjev, and Kivshar (1996). For initial data which supports a soliton structure, a generic initial perturbation oscillates around the stable family of solitons. For initial data which is expected to disperse, the finite dimensional dynamics follow the unstable portion of the soliton curve.Comment: Minor edit
    corecore